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SUMMARY 
A numerical method is presented to analyse a steady convection4ffusion problem with a first-order 
chemical reaction defined on an infinite region. The present method is based on the combined finite element 
and boundary element methods. For one- and two-dimensional examples in an infinite region the numerical 
results by the present method are in excellent agreement with the exact solutions. As a practical application, 
the simulation of the concentration distribution of the chemical oxygen demand at Kojima Bay is carried 
out. 
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1. INTRODUCTION 

It is important and valuable to solve convectiondiffusion problems with a chemical reaction in 
the actual analysis such as waste water disposal, the red tide in the ocean, air pollution, etc. These 
are mainly characterized by their fields, which are to be analysed as their boundaries extend to 
infinity. The finite element method is one of the useful numerical tools for analysing such 
problems. It is, however, difficult to analyse a problem defined on an infinite region by use of finite 
element methods.' In numerical computations, boundary conditions must be introduced on the 
boundary of the area to be analysed. For these purposes, one of three types of boundary condition 
is imposed: (i) concentration, (ii) normal derivatives of concentration or (iii) normal component of 
flux. However, there are plenty of computational results indicating that these boundary condi- 
tions cannot result in a well-suited numerical concentration. This explains the actual problem 
observed with a field whose boundary extends to infinity. To overcome this difficulty, it is strictly 
necessary to introduce a scheme which can handle the infinite boundary condition. This 
boundary is referred to as the open boundary. There are two typical approaches to deal with the 
open boundary condition: (a) an artificial boundary condition is imposed or (b) an infinite 
element2.' is attached. The first approach is preferable for us because the boundary element 
method satisfies unconditionally the infinite boundary condition by assuming that the problem is 
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linear. To obtain the artificial condition, the boundary element method is effectively used in this 
paper. We were not able to find any papers discussing the application of the approach to the 
steady convection-diffusion problem with a first-order chemical reaction defined on an infinite 
region. One of us proposed the boundary element method for the convection-diffusion problem 
with a first-order chemical reaction and obtained accurate numerical results in a previous paper.4 
However, the boundary element method has difficulties in solving problems involving non- 
homogeneous fields because it is difficult to obtain the fundamental solution explicitly. If we 
appropriately combine the finite and boundary element methods, it is obvious that a method 
which covers the defects of both methods can be obtained for the convection-diffusion problem. 
This hybrid method is called the ‘combined method’ in this paper. A similar idea has been applied 
to several problems such as the electrostatic p r ~ b l e m , ~  wave propagation: etc. 

In this paper we present a new numerical method to analyse steady convection-diffusion 
problems with or without a first-order chemical reaction defined on an infinite region. The 
present method is based on a combined method in which the boundary element method is applied 
to an unbounded region and the finite element method is applied to a bounded region. The 
validity of the present method is shown by three numerical examples. As a practical application, 
the concentration distribution of the COD (chemical oxygen demand) at Kojima Bay of 
Okayama prefecture in Japan is simulated and compared with the measured values. 

2. BASIC EQUATION 

This takes into consideration the steady convection-diffusion problem with a first-order chemical 
reaction on a two-dimensional infinite region constructed from a finite element region Q(F) and 
a boundary element region (Figure 1). The basic equation is expressed as 

L[CA] = -Dv2 CA + 0 .  v c ~  + kCA =o in n=n‘F) + n(B), (1) 
where L [  -1, CA(P) and D denote the linear operator, the concentration of reactant A and the 
constant diffusivity respectively. The symbols V ,  o (P)  and k denote the gradient operator, the 
velocity vector and the reaction rate constant respectively. P(x, y) denotes a position and x, y 
denote the Cartesian co-ordinates. Let rl and Tz be boundaries on which CA and dCA/an are 
defined respectively: 

where ( - ) denotes the prescribed function and n is the outer normal unit vector on the boundary. 

‘ interface 

Figure 1. Bounded (finite elements) and unbounded regions 
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At infinity the boundary condition is expressed as 

467 

(3) 

3. BOUNDARY ELEMENT METHOD 

Green's second identity over R for equation (1) is expressed as 

In ( c x L [ c ~ ]  -CAL* [ cx]) dQ= [(Dvcx)c,-  c x ( o v c ~ )  + Uczc,] * n dr, ,  (4) s, 
where L* [ -1  and Cx denote the adjoint operator and the adjoint potential field to CA respectively 
and TI denotes the interface between the finite and boundary element regions. The two- 
dimensional fundamental solution C* should satisfy the following equation: 

L*[ C*] = - DV2 C* -V (uC*)+ kC* =6(Pi-P), (5 )  
where 6( -), Pi(x,  y) and P(5, () denote Dirac's delta function, an arbitrary source point and a 
reference point respectively. The two-dimensional fundamental solution C*(Pi, P) is given by 

C* = ( 1/2n~)exp [ - (u * r)/2D] Kb2'( I p I I R I), 

IRI = I P r  PI = C(X - o2 + (Y - 0 1 

(6) 

(74 

where 
2 112 

9 

and n and Kb2) denote the ratio of the circumference of a circle to its diameter and a modified 
Bessel function of the second kind of order zero respectively. Equation (6) satisfies the infinite 
boundary condition (3). By choosing C* instead of Cx in equation (4) and by applying equations 
(1) and (5 )  to equation (4), the following integral equation is obtained: 

4(pi)cA(pi)+/rl D [ a c * ( p i ,  P)/anlCA(P)drI 

+frl c*(pi, p ) {  -'[~CA(P)/anl+~,CA(P)} drI=O, (8) 

where a/dn = n,(a/ax) + n,(a/ay)  and a(P,) is the weight depending on the solid angle of R defined 
by 

a(pi) = e ( ~ , ) p n .  (9) 
Here e ( P i )  is the external angle on the outer side of the bounded region if the boundary element is 
used in the external region. Assume that the interface is divided into M linear boundary elements 
( j =  1,2, , . . , M). Then discretization of equation (9) gives 

CHlCul:= [GI CQ?. (10) 
For simplicity, U, Q and I are used instead of CA, qa and r, respectively in matrix formulae. The 
(i, j )-components of [ H ]  and [ G] are respectively calculated as 

- 
H, = 4 (Pi) 6, + Hi j ,  Hij=Ir, D[dC*(P,, P)/an]Fj(P)dT, (1 la) 
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G..= C*(Pi ,  P)Fj(P)dT, 
1' S, 

in which 6, denotes the Kronecker delta and F j ( P )  is a piecewise linear function. Since equation 
(1) includes the chemical reaction term, the conservation law for the calculation of the diagonal 
components of the matrix H cannot be satisfied. Namely, the diagonal component Hii of the 
matrix H is 

M 

j =  1 
Hii# - c H ,  (i#j), (12) 

and the isoplethic concentration curve and T, are not orthogonal to each other; therefore Bii#0. 
Notice that Hii  must be calculated by equation (1 1). 

4. COMBINATION O F  THE FINITE AND BOUNDARY ELEMENT METHODS 

The combined method of the finite and boundary element methods will now be described. To do 
this, the boundary elements are transformed into the equivalent finite elements. 

Multiplying both sides of equation (10) by [GI-', the following equation is obtained 

[GI-' [HI [ U'B']: = [ Q'B']:, (13) 

where (B) denotes the boundary element region. In the bounded region, equation (1) is discretized 
by the finite element method using the linear element. Therefore the following equation is 
obtained: 

where the matrices are identified corresponding to the interface I and the bounded region R (note 
that the bounded region R is not involved with the interface) and in which (F) denotes the finite 
element region. 

However, there is still a difficult problem, since Q is the flux at the node as opposed to QV which 
is the volume flux crossing the element on the interface for the combination of equations (13) and 
(14). Using the transformation matrix A, which can be considered as the continuity of the energy 
flow transmitted in the finite and boundary element regions, the following equation is obtained' 

CQ'VF'I:= CAI CQ'B'I:. (15) 

By the relation [ U(F)]: = [ U(B)]: and from equations (13)-(15) the boundary elements can be 
transformed into the equivalent finite elements. Then the resulting global matrix is assembled as 
follows: 

The transformation matrix is explained in the two-dimensional case. The relation of the 
continuity of the energy flow on each element of the interface r,, is expressed in the following 
form: 1. U(F)QY)dr=jr,, U(B)Q(B)dT. (17) 

Using N ,  and N ,  as corresponding shape functions for the displacement of each node on the 
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interface, discretization can be carried out and leads to the following equation: 

[ UiF) UbF)] [ Qr) Qr2lT = [ V\“) USF)] [ Ir,e [ N, NJT Qr) dl-] 

- -[UIB’U(zB)l [ Ir,. CN1N21TCN1 N21 d r ]  CQ\B’Q(2B)IT. (18) 

From the relation [U\F) UiF)] = [ UtB) ViB)] the following equations relating QF’ and Q(B’ are 
obtained: 

Hence [A] is given as 

where u1 =*, a, =$ and li is each element size with the finite and boundary elements combined. 
On the other hand, in the one-dimensional case the transformation matrix [A] is equal to [ 11 

and Q(B) is obtained analytically such that 

Q(F) = Q(B)= DdCA/dx =DP( 1 - uX/2D~) CA, P2 =(I V x  1/2D)2 + k/D.  (21) 

5. NUMERICAL EXAMPLE 

To examine the validity of the present method, three examples are shown. The following 
non-dimensional parameters are used: the non-dimensional concentration of the reactant, 
0 = C,,/CAl, the non-dimensional co-ordinates X = x / b  and Y= y/b, the non-dimensional 
reaction rate constant K = kb2/D and the non-dimensional velocities Vx = v,b/D and V,  = u,b/D 
(Pe = V, is called the Peclet number). Here CAI is the characteristic concentration of the reactant 
and b is the characteristic length. The solutions are characterized by K and Pe. 

Example 1 (one-dimensional case) 

Here, in order to compare the numerical solution with the exact solution, the one-dimensional 
model is analysed. Therefore the one-dimensional fundamental solution for the boundary element 
method is used instead of equation (6): 

c *  = (1/2PDbXP c- vx(x - 5)/2D - IPI lx - t 11. (22) 
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Figure 2 illustrates the finite element model for Example 1, where the finite element region (FE 
region) is discretized into 10 linear elements and the boundary element region (BE region) is 
combined at X = 1. The boundary conditions are prescribed as 

BC1 @(0)=1, BC2 Cp(c0)=0. 

In Figure 3 the computed results of the combined method are compared with those of the finite 
element method for K=2. The solid lines show the exact solution. The boundary condition 
dO(l)/dx=O is applied for the finite element method. Figure 4 shows the relative errors of the 
numerical solutions by the combined method. It is seen that the numerical results of the combined 
method are in good agreement with the exact solution (i.e. the relative errors are less than 0.08%). 
The exact solution is described as follows: 

= exp { (x/2) [ V, - ( V; + 4 ~ )  1'2]}. (23) 

Example 2 (two-dimensional case) 

Figure 5 shows the geometry of Example 2, where the finite element region (0 < X, Y < 1) is 
discretized into 200 triangular elements, the boundary element region is combined at X =  1 and 
the flow direction is parallel to the X-co-ordinate. Example 2 is treated as the duct problem with 
an open outlet. The exact solution for this problem is not obtained. Instead of the exact solution, 

FE region BE region 

Ul =o Ul(o)=l 1-1 ._...._.......-_... 

(X=O ) (X=l) 

Figure 2. Numerical model for Example 1 (one-dimensional) 
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Figure 3. Numerical solutions for the one-dimensional problem (Example 1) 
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Figure 4. Relative errors of the numerical solutions for the one-dimensional problem (Example 1) 

@ = O  

- 
>I e c 

0 
-4 

c br 
-4 9) 
v) k 

II w 
0 

Y 

rn 

@ = O  

Figure 5. Numerical model for Example 2 (two-dimensional) 

an analytical solution obtained for the following approximated boundary conditions is used for 
the comparative study. The exact solution on the line (X, 0.5) approaches the analytical solution 
of equation (24) rapidly as the velocity increases. 

BC1 O(0, Y)=sin(nY), BC2 @(X,O)=O(X,  1)=0, BC3 @(co,Y)=O. 

The numerical results are compared with the analytical solution on the line (X,O-5). The 
analytical solution is described as follows: 

@ = [sin(n Y)] ’ exp { (X/2) [ Vx - ( Vx + 4n2 + 4K)’’’I). (24) 
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K -0 h=1/10 1 

The boundary elements are used with linear elements; the components Hij  and G,  ( i f j )  are 
evaluated numerically with the eight-point Gaussian quadrature rule, while the diagonal com- 
ponents Hii and Gii are evaluated with the 20-point Gaussian quadrature rule. 

Figures qa)  and 6(b) show the results of Example 2 for K = 0 and 30 respectively along Y= 0.5. 
The numerical results become well in agreement with the analytical solution as the velocity 
increases. 
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Figure qa). Numerical solutions for the two-dimensional problem (Example 2, K =0) 
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Figure qb). Numerical solutions for the two-dimensional problem (Example 2, K = 30) 
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Example 3 (two-dimensional case) 

Figure 7 illustrates Example 3, where the finite element region is discretized into 992 triangular 
elements and the boundary element region is combined around the finite element region. The 
reactant diffuses from the small square body to the infinite space. The velocity is assumed zero on 
the small square boundary and constant in the remaining area. 

In the case of Example 3 the concentration distributions of the diffusion phenomenon can be 
computed in the infinite region. Also, a physically consistent concentration is obtained even in the 
region close to the interface. Figure 8 shows the concentration distributions with and without 
chemical reaction. 

The analysis using the conventional finite element method of Example 3 is rather difficult 
because it is unclear how to set the boundary condition. The three conventional types of 
boundary condition cannot give reasonable results. For example, if K,/h  =O on the boundary 
is used, all the numerical results will be unitary in the case of a non-reaction system. If 
iVA =(uC,) n - DaC,/an =O on the boundary is employed, the concentration near the outlet 
boundary is more than unity. Contrary to this, using the combined method, the analysis can be 
carried out naturally for the diffusion problem in the infinite region. The numerial result using the 
conventional finite element method is also shown in Figure 9 for comparison. 

Note that the degree of freedom arising from the present method is equivalent to that in the 
linear equation arising from the finite element method for solving the problem defined on the 
truncated region. Therefore the CPU times for Example 3 are 106 s (on a FACOM380) for the 
finite element method and 114 s for the present method. 

6. COD SIMULATION AT OKAYAMA BAY 

Water which is polluted by actual drainage, etc. flows into Kojima Bay from the man-made Lake 
Kojima, Asahi River and Yoshii River. It is important to study the water pollution in order to 
improve the circumstances in the bay. In this section a simulation of the concentration distribu- 
tion of the COD (chemical oxygen demand) at Kojima Bay is presented. 

The flow distribution is calculated by the shallow water equation.* Figure 10 shows the 
geometry of Kojima Bay, where the finite element region is discretized into 1698 triangular 
elements. The amounts of water inflow to Kojima Bay are 4996000 ton day-' from Asahi River, 
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Figure 7. Numerical model for Example 3 (two-dimensional) 
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( K = 3 0 . 0 ,  V = 30.0 ) 
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Figure 8. Concentration distributions (Example 3) 
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a@/an = 0 
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Figure 10. Finite element mesh of Kojima Bay 
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5006000 ton day-' from Yoshii River and 1200000 ton day-' from the floodgate of the man- 
made Lake Kojima. The depth of water is based on the data of Reference 9. The difference in 
water elevation between the floodgate in the man-made Lake Kojima and the entrance of Kojima 
Bay is set as 0-7 m and the water elevation is approximated linearly along the path from the lake 
to the bay. A slip condition is imposed on the wall boundary. The residual current velocity of the 
tide in Set0 Inland Sea is estimated as 8.64 km day-' from west to east." The numerical method 
presented by Kawahara et al. is used with a lumping parameter of 0.8. Figure 11 shows the 
distribution of the residual current velocity. 

The concentration distribution of the COD is analyzed. The data of the COD concentration of 
water from the river are based on the 1987 annual report." The concentration gradient on the 
wall boundary is taken as zero (dC,/an = 0). The concentration is normalized by subtraction 
because the concentration in the infinite region is set to zero before the computation. After the 
computation is made, the concentration is denormalized by addition back to the original value. 
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Figure 11. Residual current velocity at Kojima Bay 
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The COD concentration at Seto Inland Sea, regarded as a semi-infinite region, is estimated to be 
1 mgl-' by the 1987 annual report.' The COD concentration distribution is shown in Figure 12. 
The expressions with the unit 'mg/l', marked '@', are the values reported by the office of 
Okayama prefecture." Judging from this comparison, it is seen that there is good agreement 
between the numerical results and the actual measurements. If we impose the Neumann condition 
on the entrance to the bay, diffusion to the external sea is not considered. However, diffusion to 
the external sea is actually an important factor in analysing the problem. In Figure 13 the 
numerical result using the finite element method is shown. The boundary condition at the 
entrance to the bay is set as dC,/dn = 0. The concentration distribution in 
Figure 13 is different from that in Figure 12 around the entrance to the bay. The concentration 
distribution in Figure 13 does not correspond to the measured values. This fact shows that the 
combined method is superior to the conventional finite element method. Note that the values of 
the COD concentration and the volume of river water are determined from the annual averages. 
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Figure 12. Computed and observed COD concentration distributions 
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Figure 13. Computed COD concentration distribution using the conventional finite element method 

7. CONCLUSIONS 

A numerical method for solving convection-diffusion problems with a first-order chemical 
reaction defined on an infinite domain is presented in this paper. The present method is based on 
a combination of the finite and boundary element methods. By using the combined method, the 
infinity boundary condition can be satisfied unconditionally because of the property of the 
fundamental solution. 

For Examples 1 and 2 we find that the numerical results by the present method are in good 
agreement with the exact solutions. In Example 3 we show the numerical result for the diffusion 
problem on the infinite region. This is difficult to obtain using the conventional method. The 
present method has been applied successfully to the concentration diffusion analysis of Kojima 
Bay. It is concluded from the numerical examples that the present method is remarkably superior 
to the conventional method. 
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